
Linear Algebra and Machine Learning:

A Simple Example

your russkie friend

October 23, 2013

1 A sum of products

Consider the following series:

a1x1 + a2x2 + ...+ an−1xn−1 + anxn =

n∑
i=1

aixi

It so happens that, using a tiny bit of linear algebra notation – an transpose
and a dot product (aka inner product for our purposes) – the following is also
true:

n∑
i=1

aixi = ATX

where A is a vector (i.e. a one-column matrix) that contains all the a values,
where X is a vector with all the x values, and where AT means taking the
transpose of A (which in this case is simply writing it out as a row vector
instead of a column vector).

2 Easier to read code (no for loops) and faster
run time (optimized libraries)

In the example above, “ATX” is arguably tighter (i.e. more concise) notation
than “

∑n
i=1 aixi”, which matters when you have a lot of these sums, perhaps

even nested inside one another. But more importantly and less arguably, your
code will be easier to read and will run faster too.

Here’s what a sum of products might look like once implemented in C++
for example:

double sum = 0;

for (int i = 0; i < n; i++)

{

sum += a[i] * x[i];

}

1



But with a bit of linear algebra notation and the right library, this code could
be simply (re)written as follows:

A.transpose() * X;

You could use the “*” for matrix multiplication because in C++ it’s possible
to overload operators. And Matlab code would read even simpler since the
transpose of A would simply be A'. But the main thing is: no for loops! Pretty
cool :). And your code will run faster too if you use linear algebra libraries since
they are highly optimized these days. When you have a lot of sums and things,
sometimes all nested, this can really simplify things and speed them up too. Or
so I get the impression.

2


